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Problem statement

We want a representation learning system that fuses:

I Multi-modal (optical and SAR) geospatial data
I Multi-scale (high and low GSD) geospatial data

We’re going to use a novel attention (Scale-ALiBi) and a combination of contrastive
and reconstructive objectives to build this system.

Right now there are systems which tackle both multi-scale (ScaleMAE[1], etc.) and
multi-modal (CROMA[2], etc.) representations, but not both.
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Scale-ALiBi

We present a transformer linear bias
attention mechanism which incorporates
cross-GSD-scale attention.

We use this to tie together three encoders
for multi-scale multi-modal data (low-res
optical, low-res SAR, and high-res optical)
with a contrastive and reconstruction
objective to form a representation learning
system invariant to data modality and
scale. Q K V
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Figure: Scale-ALiBi transformer attention
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Linear biases (ALiBi)

Linear bias positional encodings lets
transformers learn sequence lengths longer
than those presented at training time.[3]

Instead of adding sinusoidal positional
encodings, this is added directly to the
query-key product before softmax’ing the
product.

ahij =
√

d ·qhi ·khj−distance(i , j)·m(h) (1)

m(h) =
[ 1
21 ,

1
22 , · · · ,

1
28

]
(2)

Linear bias attention for each ahij in attention
matrix A ∈ Rh×L×L for h heads, sequence
length L and head depth d .[2, 3]
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Scale-ALiBi

CROMA[2] extended this to 2D
representations by adding a Euclidean
distance factor to the image patches.

We additionally scale this distance factor
by the GSD of the sample, inspired by
Scale-MAE[1].

We’re calling the resulting attention
“Scale-ALiBi.”

ahij =
√

d · qhi · khj︸ ︷︷ ︸
normal attention

− g(i , j) · m(h)︸ ︷︷ ︸
Scale-ALiBi

(3)

g(i , j) = distance(i,j) · GSD (4)

Scale-ALiBi attention. Similar to before, but
now with a GSD scaling variable. Attention
matrix A ∈ Rh×L×L for h heads, sequence
length L and head depth d .
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ViT Tokenization Recap

Figure: ViT tokenization of a 256 × 256 pixel image into 16 patches of size 64 × 64.
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Scale-ALiBi attention: same GSD

Figure: Scale-ALiBi cross-attention for images with the same GSDs and the same areas.
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ViT tokenization recap (2× resolution)

Figure: Double-resolution (512 × 512) ViT tokenization with 64 patches of size 64 × 64.
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ViT tokenization recap (2× resolution)

Figure: Double-resolution (512 × 512 pixel) ViT tokenization with 64 patches of size 64 × 64.
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Scale-ALiBi attention: differing GSDs

Figure: Scale-ALiBi cross-attention showing images with different sizes. Note that since the
two images cover the same area but with double the resolution, the scale factor is 0.5.
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Contrastive vs reconstructive representation learning

Contrastive learning is better at combining
separate views, but performs poorly on
high-frequency information.

Conversely, reconstruction objectives are
much better at reconstructing fine-grained
details[4].

We combine both to form the Scale-ALiBi
architecture to ensure that we learn
high-quality representations.

LTotal = LCont + LRecon (5)

Our loss is a simple addition of these two
components, CROMA showed that there was
no benefit to weighting[2].
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Full model architecture
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Figure: Scale-ALiBi training architecture.
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Figure: Scale-ALiBi training architecture, with Scale-ALiBi attention uses highlighted.
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Datasets

We collected a combination of
Sentinel-1 (SAR)[5], Sentinel-2
(10m optical)[5], and NAIP (60cm
optical)[6] imagery.

All samples aligned by XYZ tiles,
using the Z difference as the GSD
scale parameter.

Three datasets released: small
(21,497 samples), full (188,060
samples), and micro (146,502
samples).

Figure: Comparison of XYZ tiles from NAIP & Sentinel-2
tiles[5, 6].
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Dataset samples

Figure: Samples from the Scale-ALiBi dataset micro. These tiles were generated from Y = 17.
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Dataset samples

Figure: Samples from the Scale-ALiBi dataset small. These tiles (and full) were generated
from Y = 15.
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Benchmarking

We tested against GEO-Bench[7], consists
of six classification and six segmentation
tasks across data modes and GSDs.

We saw an improvement on
GEO-Bench scores with our foundation
model as compared to an identically-trained
SOTA model (CROMA[2]).

Figure: pv4ger classification and segmentation
benchmarks from GEO-Bench. Reproduced
from [7].
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Benchmarking

We tested against GEO-Bench[7], consists
of six classification and six segmentation
tasks across data modes and GSDs.

We saw an improvement on
GEO-Bench scores with our foundation
model as compared to an identically-trained
SOTA model, CROMA[2].

Name SA-high SA-low CROMA

k-NN

m-pv4ger 92.39% 91.89% 92.29%
m-forestnet 38.26% 37.26% 35.44%
m-euronet 58.70% 64.40% 66.30%
m-brick-kiln 75.37% 74.97% 76.47%

Figure: Selected benchmarks comparing
non-parametric embedding performance over
classification tasks in GEO-Bench.
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Conclusion and Future work

Conclusion

Overall, we showed that we are able to use the Scale-ALiBi attention to fuse
low-resolution/high-resolution optical and low-resolution SAR images into a unified
representation. We also released our dataset publicly for further representation learning
work.

Future work

I Longer training run across larger cluster.
I Add additional modality encoders into the contrastive step.
I Retain the reconstruction autoencoder after training.
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