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Abstract. Vision foundation models have been
shown to be effective at processing satellite imagery into
representations fit for downstream tasks, however, cre-
ating models which operate over multiple spatial reso-
lutions and modes is challenging. This paper presents
Scale-ALiBi, a linear bias transformer attention mech-
anism with a spatial encoding bias to relationships be-
tween image patches at different ground sample distance
scales. We provide an implementation of Scale-ALiBi
over a dataset of aligned high- and low-resolution opti-
cal and low-resolution SAR satellite imagery data using
a triple-contrastive and reconstructive architecture, show
an improvement on the GEO-Bench benchmark, and re-
lease the newly curated dataset publicly.

Introduction. The volume of satellite imagery gen-
erated by both governmental and commercial constel-
lations has been increasing year-over-year, far eclipsing
the ability for human analysts to keep up. Satellite im-
agery presents an ideal use-case for representation learn-
ing: while there is very little labeled data, the images
captured are pre-orthorectified and tagged with loca-
tion information, the sensors used to generate the im-
ages are well-characterized, and individual scenes are
frequently revisited. This means that for any given lo-
cation on Earth, there are multiple image captures both
across sensor modalities and throughout time which are
easily machine-alignable. Representation learning al-
lows for the automatic extraction of meaningful fea-
tures from multi-modal satellite imagery and thus makes
downstream tasks such as land use classification and
change monitoring simpler to implement. Currently,
representation learning models focus on learning stable
representations across ground sample distances (GSDs),
or across image modalities (e.g. radar to equivalent-
resolution optical), or across temporal captures. How-
ever, few models attempt to capture more than one of
these representations at a time.

This paper’s key contributions include first the ex-
tension of the 2D-ALiBi/X-ALiBi attention mechanism1

with GSD scaling to allow representation learning trans-
formers to incorporate both scale and distance informa-
tion from satellite images into the training process, and
second the evaluation of the resulting attention mecha-
nism over multi-scale multi-modal imagery using a novel
triple-contrastive architecture. This allows for the cre-
ation of a representation model which operates natively
over both multi-modal and multi-resolution imagery. In
order to train this model, a new dataset of aligned im-
age pairs is curated by the authors, sourcing data from
ESA’s Sentinel-1 SAR (Synthetic-Aperture Radar) and

Sentinel-2 MSI (MultiSpectral Instrument) imaging mis-
sions2 and the U.S. Department of Agriculture’s Na-
tional Agriculture Imagery Program (NAIP) high reso-
lution image acquisitions.3 This dataset is released with
the paper to facilitate further research.

Background. Foundation models in the satellite
imagery representation learning space are largely im-
plemented as self-supervised vision transformers.1, 4, 5

Transformers, while originally designed for natural lan-
guage processing tasks, have been shown to be effective
at processing images once the input images are split into
a sequence of patches which are then processed similarly
to language tokens.6 When trained in a self-supervised
manner, these vision transformers learn representations
without requiring labeled information (which is expen-
sive to acquire at scale).

Scale-MAE5 has demonstrated the effectiveness of
scaling the sinusoidal position encoding of image tokens
by the GSD of the input sample, explicitly learning the
relationship between low- and high-resolution views of
a single modality sample. Similarly, CROMA1 demon-
strated that contrastive learning can learn a cross-modal
representation between Sentinel-1 synthetic-aperture
radar (SAR) and Sentinel-2 MSI (optical) patches of
uniform size. CROMA also introduced an extension of
the ALiBi linear bias attention mechanism7 into two di-
mensions for both self-attention (2D-ALiBi) and cross-
attention (X-ALiBi), encoding the Euclidean distance
between sample pairs. Linear bias attention allows for
the transformer to extrapolate to sequences longer than
sequences presented during training,7 which is a desir-
able property in remote sensing, as images can be ex-
tremely large.

Method.
Scale-ALiBi attention. In order to add a GSD scale-

aware component to our representation model, we intro-
duce the Scale-ALiBi attention mechanism. We define
the Scale-ALiBi matrix very similarly to the 2D-ALiBi
matrix, with an attention matrix A ∈ Rh×L×L for h

heads with sequence length L and head depth d. Each
position in the attention matrix is given by Eq. (1):

ahij =
√
d · qhi · khj︸ ︷︷ ︸

normal attention

− g(i, j) ·m(h)︸ ︷︷ ︸
Scale-ALiBi

(1)

where qhi and khj are the i-th query and j-th key (vec-
tors of dimension d), m(h) is the head-specific fixed slope
(as in ALiBi), and g(i, j) is given by Eq. (2):

g(i, j) = distance(i,j) · GSD (2)

where distance(i, j) is the Euclidean distance between
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Figure 1. A block diagram of the full Scale-ALiBi model.

the patches corresponding to i and j and is multiplied
with a bias of the GSD of the source image (which
differentiates this approach from vanilla 2D-ALiBi/X-
ALiBi). As with ALiBi and 2D-ALiBi/X-ALiBi, the
bias is added during the attention calculation before the
softmax step and no attention is added at the bottom
of the network.

This approach allows for the comparison of images at
different resolutions, where a higher GSD (and higher
resolution) image may be split into more tokens than a
lower GSD image. For example, a 256 × 256 Sentinel-2
image sample can be split into 1024 patches of size 8

whereas a 512× 512 NAIP image can be split into 4092

patches of equivalent size. These samples represent the
same physical area, so a cross-encoder attention can be
encoded as in Figure 2.

Contrastive learning. To evaluate the effectiveness of
the Scale-ALiBi attention, a setup broadly similar to
CROMA1 is used, with the addition a high-resolution
encoder Ehires and a second cross-encoder to incorporate
the high-resolution token stream into the final images.
See Figure 1 for an overview of the model architecture.

For the contrastive learning step, three separate op-
tical and SAR ViT encoders are trained: two low-
resolution encoders for the Sentinel-1 synthetic-aperture
radar and Sentinel-2 optical observations (Eradar, Elores)
and one high-resolution (2x resolution) encoder for the
aligned NAIP imagery (Ehires). Note that the Ehires en-
coder produces quadruple the number of tokens as the
image is at double resolution. These encoded represen-
tations are aligned using an extension of the standard
InfoNCE contrastive loss objective function8 to add an
extra representation, as in Eq. (3):

LCon =
−1

|
(
M
2

)
|2N

( (M2 )∑
(m1,m2)

N∑
i

exp(zi >m1
zim2

/σ)∑N
j exp(zj >

m1 z
j
m2/σ)

)
(3)

where M is the set of modalities (in our case low-res. op-
tical, high-res. optical, and SAR),

(
M
2

)
is the set of 2-

Figure 2. An example Scale-ALiBi attention ma-
trix for 4 patches of size 4 computed from a 4×4

source image s, with a 8× 8 context image c con-
taining 16 patches. s and c represent the same
physical area on the ground, and thus this ma-
trix functions as a distance lookup table com-
paring these two token streams. Note that here
the slopes for the different attention heads were
omitted for clarity.

combinations of M , N is the batch size, σ is the tem-
perature, and zm is the linearized and normalized rep-
resentation of modality m. When LCon is minimized,
the representations of all three modalities from a single
physical location are “squeezed” together, and “pushed”
away from all other representations of other scenes.

Additionally, the encoded output tokens from the
three encoders are cross-encoded, first with Elores and
Eradar tokens to create a joint radar-optical encoding,
and then this encoding with a second cross-encoder with
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the Ehires token stream in order to form the final token
stream.

Finally, these tokens are encoded using a masked
autoencoder9 mechanism using a similar setup to
CROMA, where the MAE reconstructs all sensor modal-
ities into a single patch with N channels, where N is the
sum of all input channels—effectively fusing the input
sensors.1 The reconstruction loss LRecon is modified to
add a term for the hires token strema, as in Eq. (4):

LRecon =
1

N

N∑
i

(
R(tradar)

M
+
R(tlores)

M
+
R(thires)

M

)
(4)

where N is the batch size, M is the number of masked
patches, and R(t) is sum of the differences between
the ground truth Imode and the mode channels of the
predicted packed representations fdec(tmode). As in
CROMA, the encoded tokens are normalized to a mean
of 0 and a standard deviation of 1. The full function
R(t) is given by Eq. (5):

R(tmode) =

M∑
j

Imode − Norm(fDEC(tmode)) (5)

Again, like CROMA, fDEC( · ) is a ViT with a 2D sinu-
soidal embedding operating over the masked multimodal
patch embeddings.

The final loss to be optimized is a simple addition of
the contrastive loss and the reconstructive loss, as shown
by Eq. (6):

L = LCon + LRecon (6)

Dataset curation. In order to train this model, a
dataset of paired low-resolution optical, low-resolution
SAR, and high-resolution optical images is required. No
existing public dataset was found that fit the bill, so in
addition to the analysis of the Scale-ALiBi attention, a
goal of this research is to curate this dataset.

As shown in Figure 3, in order to generate this dataset
Sentinel-1 and Sentinel-2 images are ingested and seg-
mented into XYZ tiles at a specified level Y and stored
as PNGs with a 256 × 256 pixel resolution. The true-
color image (TCI) product is segmented from Sentinel-
2’s L2A collection directly, while the Sentinel-1 L2A VV
and VH captures are scaled to 256

1000 , with the VV band
assigned to the green channel and VH to the blue chan-
nel. An empty red channel is inserted, and the image is
quantized to 8 bits. Then, high resolution images from
NAIP are sourced for the same XYZ tiles at Y in order
to form a 256 × 256 high-resolution sample. Addition-
ally, the next tile level down (Y + 1) is collected from
NAIP in order to form a 512 double-resolution image.

Due to the geographic constraints of the NAIP tile-
set, the Scale-ALiBi dataset is limited to images cov-
ering the continental United States and Puerto Rico.

Figure 3. A selection of samples from the Scale-
ALiBi dataset. Note that the rightmost column
is double the size of the normal samples.

Within this area, a series of smaller regions are selected
for coverage based on geographic diversity and zoom
scale, and these subsets are released as different dataset
sizes. See Table 1 for more information about available
datasets. Instructions for accessing these is available
from the project website1.

Table 1. Available dataset sizes.
Name Description Base Y Samples
small Test/debug set 15 21,497
full Full size dataset 15 146,502
micro Zoomed-in dataset 17 188,060

1https://github.com/pkage/scale-alibi
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Results. This model is evaluated over the GEO-
Bench10 benchmark dataset, which contains 6 classifica-
tion and 6 segmentation tasks over both high- and low-
resolution optical and SAR imagery and includes subsets
of the datasets for those tasks. In order to maintain a
fair comparison with CROMA while keeping computa-
tional constraints in mind, the CROMA model is trained
with identical data on identical hardware for an equiv-
alent amount of time; and while the preliminary Scale-
ALiBi results fall somewhat short of CROMA’s pub-
lished state-of-the-art results the authors are optimistic
that with a much larger training run, equivalent results
can be achieved. Both of these models were trained with
the Y = 15 full size dataset (see Table 1).

For the classification tasks, a neural network with
one hidden layer (of size 2048) is used on top of
the learned cross-modal representations, as is standard
for representation learning tasks. Additionally, non-
parametric methods are evaluated over the raw represe-
tations, namely k-means clustering and k-nearest neigh-
bors (n = 20). Additionally, a UMAP11 dimensionality
reduction preprocessing step for the k-means clustering
was evaluated. Both the high resolution and low res-
olution optical encoders were used for the Scale-ALiBi
benchmarks, with the benchmark patches being scaled
to 256×256 for the low-resolution encoder and 512×512

for the high-resolution encoder. The CROMA bench-
mark was run identically, except with the omission of
the high-resolution encoder. Overall, Scale-ALiBi per-
formed similarly or better than CROMA in these bench-
marks, with full results found in Table 2.

Conclusion. In this paper, we present developmen-
tal and preliminary results from the Scale-ALiBi linear
bias attention mechanism for multi-modal and multi-
scale remote sensing foundation models. We provided
a reference implementation of the attention as an ex-
tension of CROMA where a high-resolution encoder is
added. This initial model is then benchmarked against
an equivalently-trained CROMA instance, showing a
modest improvement. Additionally, a dataset of aligned
low-resolution SAR, low-resolution optical, and high-
resolution optical image sample also of value for remote
sensing work and is released alongside the paper. Future
work for this project includes the curation and release
of a much larger dataset, as well as longer training runs
for the Scale-ALiBi model.
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